数据库研究套路汇总——CHARLS

NHANES、MIMIC、GBD已更新,大家如有需要请移步主页,今天为大家带来的是国产、认可度极高、发展潜力极大的CHARLS数据库的研究思路分享。

套路 1:生活方式和中介分析

套路精髓:生活方式(包括运动、吸烟、饮酒、睡眠、BMI、社交活动等)
适用场景:老年人群体、心血管疾病、身体多病性、抑郁症等

案例文章
标题:Associations of healthy lifestyle and three latent socioeconomic status patterns with physical multimorbidity among middle-aged and older adults in China
期刊Preventive Medicine(IF=4.3)
DOI:10.1016/j.ypmed.2023.107693

套路 2:预测模型与风险因素

套路精髓:通过构建预测模型识别健康风险
适用场景:视力障碍、虚弱风险、卒中再发风险、高脂血症风险等

案例文章
标题:Determinants of Visual Impairment Among Chinese Middle-Aged and Older Adults: Risk Prediction Model Using Machine Learning Algorithms
期刊JMIR Aging(IF=5.0)
DOI:10.2196/59810

套路 3:变量之间的交互效应

套路精髓:探讨多种因素之间的交互效应对健康结局的影响

案例文章
标题:Interacting and joint effects of triglyceride-glucose index (TyG) and body mass index on stroke risk and the mediating role of TyG in middle-aged and older Chinese adults: a nationwide prospective cohort study
期刊Cardiovascular Diabetology(IF=8.5)
PMID:38218819
DOI:10.1186/s12933-024-02122-4

套路 4:疾病的动态变化与长期随访

套路精髓:通过长期随访数据,研究疾病的动态变化及其与不同健康结果的关联
适用场景:慢性疾病、老年人群、健康衰退等

案例文章
标题:Changes in sarcopenia and incident cardiovascular disease in prospective cohorts
期刊BMC Medicine(IF=7.0)
PMID:39736721
DOI:10.1186/s12916-024-03841-x

Leave a Reply

Your email address will not be published. Required fields are marked *